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1 Introduction

The paper deals with the Mayer problem of the higher-order evolution differential inclusions
(DFIs) with endpoint constraints:

minimize f (x(0), x(T )) , (1)

(PHC)
dkx(t)

dtk
∈ F (x(t), t), a.e. t ∈ [0, T ] , (2)

(
x(j)(0), x(j)(T )

)
∈ S, j = 0, 1, ..., k − 1, (3)

where F (· , t) : Rn ⇒ Rn is a convex set-valued mapping, f : R2n → R1 is a proper convex
function, k is an arbitrary fixed natural number, S ⊆ R2n, T is an arbitrary positive real
number. The problem is to find an arc x̃(·) of the problem (PHC) that almost everywhere (a.e.)
satisfies the inclusion (2) on the time interval [0, T ], endpoint constraints (3), and minimizes
the so-called Mayer’s functional f (x(0), x(T )). Let us refine the definition of the concept of a
solution of problem for k-th order DFIs (2)-(4). Suppose ACj ([0, T ] ,Rn) is the space of j-times
differentiable functions x(·) : [0, T ] → Rn, wherej-th order derivative x(j)(·) ≡ d(j)x(·)

/
dtj(j =

1, ..., k) is absolutely continuous and L1 ([0, T ] ,Rn) is the Banach space of integrable (in the

Lebesgue sense) functions u(·) : [0, T ] → Rnendowed with the norm ∥u(·)∥1 =
∫ T
0 |u(t)| dt. A

function x(·) ∈ ACk−1 ([0, T ] ,Rn) is a feasible solution of a problem (2)-(3) if there exists an
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integrable function υ(t) ∈ F (x(t), t), a. e. t ∈ [0, T ], with x(k)(t)= υ(t) a. e. t ∈ [0, T ] and x(·)
satisfies endpoint conditions (3).

It should be noted that having endpoint constraint
(
x(j)(0), x(j)(T )

)
∈ S, j = 0, 1, ..., k−1 as

aspects of the model are required for applications. For example, in the case of state constraints
(Clarke, 1990) gives an excellent introduction to this problem with first order DFIs and describes
several applications. These methods can be applied to obtain a powerful unified approach to
the analysis of optimal control problems, mathematical programming, economics, engineering,
mathematical physics, and various areas of analysis, designing optimal or stabilizing feedback,
etc.

The present problem (PHC) in a nonconvex setting in the case k = 1 and with a state
constraint x(t) ∈ X(t), t ∈ [0, T ] was considered in the paper by (Loewen & Rockafellar 1994),
in which under several stringent conditions the necessary conditions for optimality are derived;
such restrictions are imposed as constraint qualification; locally Lipschitz property of the cost
functionalf ; measurability of F ; the closedness of the values of X(t) and the lower semiconti-
nuity of X(t), etc. Given the existing assumptions, a lot of effort has been made to overcome
the significant difficulty that has arisen in the formulation and derivation of the necessary con-
ditions. We believe that our sufficient optimality conditions contain more convenient forms of
the transversality condition and Euler-Lagrange inclusion conditions. Moreover, the simplic-
ity of the locally adjoint mapping (LAM) approach and the method of the “cone of tangent
directions” instead of the normal cone simplifies the derivation and formulation of optimality
conditions (Mahmudov 2011). We hope that all these improvements will serve for the further
development of the theory of duality theory.

Recall that in the optimal control theory, various problems are reduced to problems with
differential inclusions, set-valued mappings (Adly et al., 2012; Ansari et al., 2018; Auslender
& Mechler, 1994; Azzam-Laouir et al., 2007; Bors & Majewski, 2014; Ioan Boţ et al., 2009;
Dempe & Pilecka, 2016; Eichfelder, 2012; Khan et al., 2016; Loewen & Rockafellar, 1994;
Mahmudov, 2005; Mahmudov, 2007; Mahmudov, 2006; Mahmudov, 2014a; Mahmudov, 2014b;
Mahmudov, 2018a; Mahmudov, 2018b; Mahmudov, 2020a; Mahmudov, 2019; Mahmudov &
Mardanov, 2020b; Mahmudov, 2018c; Tuan, 1994).

Although a significant part of the paper is devoted to the derivation of optimality conditions
for problem (PHC) its main goal is to construct and study the duality theory (Aboussoror et
al., 2017; Causa et al., 2018; Cruceanu, 1980; Elster et al., 1989; Fajardo & Vidal, 2016; Grad,
2016; Hamel, 2011; Hernández et al., 2013; Mahmudov, 2005; Mahmudov, 2019; Mahmudov, &
Mardanov, 2020b; Rockafellar, 1974; Volle et al., 2015) for it. On the one hand, duality theory
provides a powerful theoretical tool for the analysis of optimization and variational problems,
and on the other hand, it opens the way to the development of new algorithms to solve them.
The reader can refer to (Mahmudov, 2005; Mahmudov, 2019; Volle et al., 2015) and their
references for more details on this topic. For convex optimization problems, the duality gap,
that is, the difference between the optimal values of the primal and dual problems, is zero under
a constraint qualification condition. As far as we know, there only are several works (Mahmudov,
2005; Mahmudov, 2011; Mahmudov, 2019) devoted to the problems of duality of ordinary and
partial DFIs.

In the papers (Mahmudov, 2014b; Mahmudov, 2018a; Mahmudov, 2018b; Mahmudov, 2020a;
Mahmudov, 2019; Mahmudov & Mardanov 2020b; Mahmudov, 2018c) and in the book (Mah-
mudov, 2011), for optimal control problems with ordinary and partial DFIs in terms of locally
adjoint mappings (LAMs) the optimality conditions are derived.

The obtained results can be organized in the following order:

In Section 2, for the convenience of the readers, all definitions, basic facts and concepts from
the book of (Mahmudov, 2011) are given.

In Section 3, sufficient condition of optimality for a problem (PHC) with k -th order differ-
ential inclusion is proved. Also are formulated the so-called transversality conditions imposing
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some conditions on the endpoints of the trajectory x∗(j)(0), x∗(j)(T ), j = 0, ..., k− 1. It is shown
that in the particular case when k = 1 the existing optimality conditions imply the classi-
cal Euler-Lagrange adjoint inclusion. Thus, we obtain sufficient optimality conditions for the
problem posed by (Loewen & Rockafellar, 1994), if X(t) ≡ Rnfor all t ∈ [0, T ]. At the end
of the section, the results obtained in a linear third-order optimal control problem (PTL) are
demonstrated. An analogue of the adjoint equation, transversality condition and Ponrtyagin’s
maximum principle (Pontryagin, et al., 1962) are formulated.

In Section 4 are investigated duality results for primal problem (PHC); for the optimality
of the family of “dual variables” in the dual problem (PHC*) it is necessary and sufficient that
the optimality conditions be satisfied. It simply means that the Euler-Lagrange inclusion is a
“dual relation” for both the primal (PHC) and dual (PHC *) problem.

In Section 5 duality problems for third order linear and fourth order polyhedral DFIs are
investigated; first the dual problem is constructed for the linear problem of the third order,
considered in Section 3. It is shown that for the function of the dual variable in the dual problem
(PTL*) to be optimized, it is necessary and sufficient that the adjoint third order equation and
the Pontryagin maximum principle be satisfied. Second, a dual problem is constructed for a
fourth-order polyhedral problem. For this, the given problem is reduced to a linear programming
problem, and thus the ”support function” is calculated for the graph of the polyhedral mapping.
It turns out that, according to convex programming problems, maximization in the dual problem
is carried out over nonnegative functions. From an applied point of view, these examples show
that the considered approach to constructing duality turns out to be justified.

In conclusion, we note that for the values of the primal (α) and dual problems (α∗), the
inequality α ≥ α∗ is satisfied, more precisely, if the variables of the primal and dual problems
satisfy the Euler-Lagrange inclusion, then these values are equal. Moreover, it is clear that
convex and convexified problems have the same concave dual problem. This is explained by
the fact that convex, convex closed sets and convex hulls of nonconvex sets have the same
support function. Here we study the optimality conditions for Mayer problems (PHC) and
duality theorem based on dual operations of addition and infimal convolution of convex functions.
However, the constructions of Euler-Lagrange type inclusions, transversality conditions, and
duality problems are beyond the scope of this paper, so it is omitted. And in this sense, the
results obtained in Sections 3 and 4 are only the visible part of the ”icebergs”. We emphasize
that the results obtained are universal in the sense that for any k one can formulate sufficient
optimality conditions and construct dual problems for the primal problem (PHC).

2 Necessary facts, preliminaries

All definitions and concepts that we come across can be found in (Mahmudov, 2011). Suppose
that F : Rn ⇒ Rn is a set-valued mapping from n-dimensional Euclidean space Rn into the
family of subsets of Rn, ⟨x, v⟩ be an inner product of x and v. F is convex closed if its graph
is a convex closed set in R2n. Let’s give important definitions, which we will often see in the
paper:

HF (x, v
∗) = sup

v
{⟨v, v∗⟩ : v ∈ F (x)} , v∗ ∈ Rn,

FA(x; v
∗) = {v ∈ F (x) : ⟨v, v∗⟩ = HF (x, v

∗)} .

HF and FA are called Hamiltonian function and argmaximum set for a set-valued mapping F,
respectively. If F (x) = ∅ for a convex F we put HF (x, v

∗) = −∞.
Throughout this paper the support function of a set Q ⊆ Rn is denoted by

WQ(x
∗) = sup {⟨x, x∗⟩ : x ∈ Q} .

For such a mapping F , the cone of tangent directions at the point (x0, v0) ∈ gphF is defined as
follows
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KF (x0,v0)≡KgphF
(x0, v0) = cone

[
gphF − (x0, v0)

]
= {(x̄, v̄) :

x̄ = γ(x− x0), v̄ = γ(v − v0), γ > 0
}
, ∀(x, v) ∈ gphF.

A set-valued mapping F ∗ (·, x, v) : Rn ⇒ Rndefined by

F ∗
(
v∗; (x0v0)

)
= {x∗ : (x∗,−v∗) ∈ KF ∗ (x0, v0)

}
is called the LAM to F at a point (x0, v0)∈gphF , where KF ∗ (x0, v0) is the dual cone. Note
that, using the definition of the cone of tangent vectors in the non-convex case, the LAM for
non-convex multivalued mappings is determined by the same formula (Mahmudov, 2011).

A “dual” mapping defined by

F ∗ (v∗; (x0, v0)) : =
{
x∗ : HF (x, v

∗)−HF (x
0, v∗)

≤
⟨
x∗, x− x0

⟩
, ∀x ∈ Rn

}
, v ∈ F (x; v∗)

is called the LAM to “nonconvex” mapping Fat a point (x0, v0)∈gphF . Obviously, in the convex
case HF (· , v∗) is concave and the latter definition of LAM coincide with the previous definition
of LAM. In fact, the given in the paper notion LAM is closely related to the coderivative
concept of (Mordukhovich, 1995; Mordukhovich, 2006; Mordukhovich, et al., 2017), which is
essentially different for nonconvex mappings. In the most interesting settings for the theory and
applications, coderivatives are nonconvex-valued and hence are not tangentially/derivatively
generated. However, for the convex maps the two notions are equivalent.

A function g = g(x, y) is called a proper function if it does not assume the value −∞ and is
not identically equal to +∞. Obviously, g is proper if and only if domg ̸= ∅ and g(x, y) is finite
for (x, y) ∈ domg = {(x, y) : g(x, y) < +∞}.

Definition 1. A function g(x, y) is a closure if epi g = {(ξ, x, y) : ξ ≥ g(x, y)}is a closed set.

Definition 2. The function g ∗ (x∗, y∗) defined as below is called the conjugate of g :

g ∗ (x∗, y∗) = sup
x,y

{⟨x, x∗⟩+ ⟨y, y∗⟩ − g(x, y)} .

It is easy to see that the function

MG(x
∗, v∗) = inf {⟨x, x∗⟩ − ⟨v, v∗⟩ : (x, v) ∈ gphF} = inf

x
{⟨x, x∗⟩ −HF (x, v

∗)}

is a support function taken with a minus sign. Besides, it follows that for a fixed v∗

MF (x
∗, v∗) = − [−HF (· , v∗)] ∗ (x∗)

that is, MF is the conjugate function for −HF (· , v∗) taken with a minus sign. By Lemma 2.6
(Mahmudov, 2011) it is noteworthy to see that x∗ is an element of the LAM F∗ if and only if

MF (x
∗, v∗) = ⟨x, x∗⟩ −HF (x, v

∗).
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3 Sufficient condition of optimality for a problem (PHC)
with k-th order differential inclusion

In this section, we formulate the Euler-Lagrange inclusion for the problem under consideration.
Due to the fact that the construction of the Euler-Lagrange inclusion, as well as transversality
conditions are complicated by the accompaniment of discrete and discrete-approximation prob-
lems (see, for example (Mahmudov, 2007; Mahmudov, 2006; Mahmudov, 2014a; Mahmudov,
2014b; Mahmudov, 2018a; Mahmudov, 2018b; Mahmudov, 2020a)) we omit it and formulate
only the final result. So let us formulate for a Lagrange problem (PHC) with k-th order dif-
ferential inclusion the following Euler-Lagrange type inclusion and the so-called transversality
conditions:

(a) (−1)kx∗(k)(t) ∈ F ∗
(
x∗(t); (x̃(t), x̃(k)(t)), t

)
, a.e. t ∈ [0, T ] ,

(b) x̃(k)(t) ∈ FA (x̃(t);x∗(t), t) ,

(c)
(
(−1)k−1x∗(k−1)(0), (−1)kx∗(k−1)(T )

)
∈ ∂f(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),

(d)
(
(−1)j+1x∗(j)(0), (−1)jx∗(j)(T )

)
∈ KS ∗

(
x̃(k−j−1)(0), x̃(k−j−1)(T )

)
, j = 0, ..., k − 2.

The definition of the solution to the Euler-Lagrange inclusion is defined similarly to the
definition of the solution to problem (PHC). A function x∗(·) ∈ ACk−1([0, T ] , Rn) is called
a feasible solution of problem (a)-(d) if there exists a function w(·) ∈ L1 ([0, T ] , Rn) with
w(t) ∈ F ∗

(
x∗(t); (x(t), x(k)(t)), t

)
a.e. t ∈ [0, T ] such that (−1)kx∗(k)(t)= w(t) a.e. t ∈ [0, T ]

and x∗(·) satisfies the transversality conditions (c),(d).

Theorem 1. Let F (·, t) : Rn ⇒ Rn be a convex mapping and f : R2n → R1 ∪ {+∞} be
continuous proper convex function. Besides, let S ⊆ R2n be a convex set. Suppose that there
exists a pair of functions {x∗(·), x̃(·)} satisfying a.e. the Euler-Lagrange type inclusions (a), (b)
and transversality conditions (c), (d). Then the trajectory x̃(·) is optimal in the convex problem
(PHC).

Proof. The Euler-Lagrange inclusion, is equivalent to subdifferential inclusion

(−1)(k)x∗(k)(t) ∈ ∂xHF .(x̃(t), x
∗(t)) (4)

In turn by definition of Hamiltonian function HF (4) implies that

HF (x(t), x
∗(t))−HF (x̃(t), x

∗(t)) ≤
⟨
(−1)kx∗(k)(t), x(t)− x̃(t)

⟩
. (5)

Then from the inequality (5) we have⟨
x(k)(t)− x̃(k)(t), x∗(t)

⟩
−

⟨
(−1)kx∗(k)(t), x(t)− x̃(t)

⟩
≤ 0. (6)

Now we need to integrate inequality (6) over the time interval [0, T ]:∫ T

0

[⟨
x(k)(t)− x̃(k)(t), x∗(t)

⟩
−
⟨
(−1)kx∗(k)(t), x(t)− x̃(t)

⟩]
dt ≤ 0. (7)

Then the square brackets of inequality (7) can be reduced into the following equality relation⟨
x(k)(t)− x̃(k)(t), x∗(t)

⟩
−
⟨
(−1)kx∗(k)(t), x(t)− x̃(t)

⟩
= − d

dt

⟨
(−1)kx∗(k−1)(t), x(t)− x̃(t)

⟩
+

d

dt

⟨
(−1)k−1x∗(k−2)(t), x′(t)− x̃′(t)

⟩
− d

dt

⟨
(−1)k−2x∗(k−3)(t), x′′(t)− x̃′′(t)

⟩
9
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+
d

dt

⟨
(−1)k−3x∗(k−4)(t), x′′′(t)− x̃′′′(t)

⟩
− · · ·+ d

dt

⟨
x∗(t), x(k−1)(t)− x̃(k−1)(t)

⟩
. (8)

Now, if we integrate inequality (8) over [0, T ] according to higher-order differential calculus
(Mahmudov, 2013), we obtain∫ T

0

[⟨
x(k)(t)− x̃(k)(t), x∗(t)

⟩
−
⟨
(−1)kx∗(k)(t), x(t)− x̃(t)

⟩]
dt

= −
⟨
x(T )− x̃(T ), (−1)kx∗(k−1)(T )

⟩
−
⟨
x′(T )− x̃′(T ), (−1)k−1x∗(k−2)(T )

⟩
−
⟨
x′′(T )− x̃′′(T ), (−1)k−2x∗(k−3)(T )

⟩
− · · ·

+
⟨
x(k−1)(T )− x̃(k−1)(T ), x∗(T )

⟩
+
⟨
x(0)− x̃(0), (−1)kx∗(k−1)(0)

⟩
+
⟨
x′(0)− x̃′(0), (−1)k−1x∗(k−2)(0)

⟩
+
⟨
x′′(0)− x̃′′(0), (−1)k−2x∗(k−3)(0)

⟩
+ · · · −

⟨
x(k−1)(0)− x̃(k−1)(0), x∗(0)

⟩

=
k−1∑
j=0

⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)− x̃(k−j−1)(0)

⟩
(9)

−
k−1∑
j=0

⟨
(−1)j+1x∗(j)(T ), x(k−j−1)(T )− x̃(k−j−1)(T )

⟩
.

Denoting right hand side of (9) by Ω for all feasible x(·), x̃(·), we have

Ω =
k−1∑
j=0

⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)− x̃(k−j−1)(0)

⟩

−
k−1∑
j=0

⟨
(−1)j+1x∗(j)(T ), x(k−j−1)(T )− x̃(k−j−1)(T )

⟩

=
k−2∑
j=0

⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)− x̃(k−j−1)(0)

⟩
+
⟨
(−1)kx∗(k−1)(0), x(0)− x̃(0)

⟩

−
k−2∑
j=0

⟨
(−1)j+1x∗(j)(T ), x(k−j−1)(T )− x̃(k−j−1)(T )

⟩
−
⟨
(−1)kx∗(k−1)(T ), x(T )− x̃(T )

⟩
≤ 0.

(10)
By the transversality condition (d) we have⟨

(−1)j+1x∗(j)(0), x(k−j−1)(0)− x̃(k−j−1)(0)
⟩

+
⟨
(−1)jx∗(j)(T ), x(k−j−1)(T )− x̃(k−j−1)(T )

⟩
≥ 0, j = 0, ..., k − 2. (11)

Then from (10) and (11) for all feasible trajectories x(·), x̃(·) as a result we derive⟨
(−1)kx∗(k−1)(0), x(0)− x̃(0)

⟩
−
⟨
(−1)kx∗(k−1)(T ), x(T )− x̃(T )

⟩
≤ 0. (12)
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On the other hand, let a pair (µ∗(0), µ∗(T )) be an element of the dual cone in the transversality
condition (c), i.e., (µ∗(0), µ∗(T )) ∈ KS ∗ (x̃(0), x̃(T )). Then by the condition (c) we have

f(x(0), x(T ))− f(x̃(0), x̃(T )) ≥
⟨
(−1)k−1x∗(k−1)(0) + µ∗(0), x(0)− x̃(0)

⟩

+
⟨
µ∗(T ) + (−1)kx∗(k−1)(T ), x(T )− x̃(T )

⟩
. (13)

Since in (13) for all feasible solutions ⟨µ∗(0), x(0)− x̃(0)⟩+ ⟨µ∗(T ), x(T )− x̃(T )⟩ ≥ 0 we obtain

f(x(0), x(T ))− f(x̃(0), x̃(T )) ≥
⟨
(−1)k−1x∗(k−1)(0), x(0)− x̃(0)

⟩

+
⟨
(−1)kx∗(k−1)(T ), x(T )− x̃(T )

⟩
. (14)

Then from (12) and (14) for all for all feasible x(·) we have the needed inequality

f(x(0), x(T ))− f(x̃(0), x̃(T )) ≥ 0,

i. e.

f(x(0), x(T )) ≥ f(x̃(0), x̃(T )).

Remark 1. Note that if Dk is an operator of derivatives of the k-th order, then the operator A,
defined as Ax = Dkx, is either a self-adjoint operator or an anti-self-adjoint operator depending
on the parity of k, i.e., if k is an even number, then using the formal adjoint definition of
the adjoint operator, we have A ∗ x∗ := (−1)kDkx∗ = Dkx∗ = Ax∗, and if kis odd, then
A ∗ x∗ := (−1)kDkx∗ = −Dkx∗= −Ax∗. In fact, as can be seen from the proof of the Theorem
3.1, it is also valid in the case k = 1 for a problem (PHC) with a first-order differential inclusion.

Obviously, the Euler - Lagrange inclusion with a first-order anti-self-adjoint operator and the
transversality condition have the form

(1) − x∗
′
(t) ∈ F ∗ (x∗(t); (x̃(t), x̃′(t)), t) , a.e. t ∈ [0, T ] ,

(2) x̃′(t) ∈ FA (x̃(t);x∗(t), t) ,

(3) (x∗(0),−x∗(T )) ∈ ∂f(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )).
In this sense the Euler-Lagrange inclusion of problem (PHC) is an immediate generalization

of classical Euler-Lagrange inclusion for first order DFIs.

At the end of the paper we consider the problem (PHC) for third order “linear” DFIs. Hence
it follows that inclusion (a) of Theorem 1 is a generalization of the Euler - Lagrange inclusion.

Let us consider the problem:

minimize f(x(0), x(T )),

(PTL)
d3x(t)

dt3
∈ F (x(t)), a.e. t ∈ [0, T ] , F (x) ≡ Ax+BU,(
x(j)(0), x(j)(T )

)
∈ S, j = 0, 1, 2,

where f is continuously differentiable function A is n×n matrix and B is n×r matrix, U -convex
compact in Rr. The problem is to find a control function ũ(t) ∈ Uso that the corresponding
solution x̃(t) minimizes f(x(0), x(T )).

11
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Corollary 1. Suppose that in the problem (PHC) the condition (3) consists of the following(
x(j)(0), x(j)(T )

)
∈ Sj , j = 0, 1, ..., k− 1, that is, each pair

(
x(j)(0), x(j)(T )

)
belongs to different

sets. Then the conditions (c), (d) consist of the following:(
(−1)k−1x∗(k−1)(0), (−1)kx∗(k−1)(T )

)
∈ ∂f(x̃(0), x̃(T ))−KS0 ∗ (x̃(0), x̃(T )),(

(−1)j+1x∗(j)(0), (−1)jx∗(j)(T )
)
∈ KSj+1 ∗

(
x̃(k−j−1)(0), x̃(k−j−1)(T )

)
, j = 0, ..., k − 2.

Proof. It suffices to recall that inequalities (11) and (13) are satisfied for the set Sj , j = 1, ..., k−1
and S0, respectively.

Theorem 2. The arcx̃(t) according to the control function ũ(t) is a solution of the problem
(PTL), if there exists an absolutely continuous function x∗(t), satisfying the third order adjoint
equation, the transversality condition, and the Pontryagin maximum principle (Pontryagin, et
al., 1962):

−x∗
′′′
(t) ∈ A ∗ x∗(t)(

x∗
′′
(0),−x∗

′′
(T )

)
∈ f ′(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),(

(−1)j+1x∗(j)(0), (−1)jx∗(j)(T )
)
∈ KS ∗

(
x̃(2−j)(0), x̃(2−j)(T )

)
, j = 0, 1

⟨Bũ(t), x∗(t)⟩ = max
u∈U

⟨Bu, x∗(t)⟩ .

Proof. By elementary computations, we find that if ṽ = Ax̃+Bũ, then

F ∗ (v∗; (x̃, ṽ)) =
{

A ∗ v ∗, if −B ∗ v∗ ∈ KU ∗ (ũ),
∅, if −B ∗ v∗ /∈ KU ∗ (ũ),

whereas ⟨u− ũ,−B ∗ v∗⟩ ≥ 0, u ∈ Uor ⟨Bũ, v∗⟩= max
u∈U

⟨Bu, v∗⟩. Thus, using Theorem 3.1 we

deduce the adjoint linear differential equation of the third order, the transversality conditions,
and the Pontryagin maximum principle:

−x∗
′′′
(t) ∈ A ∗ x∗(t), ,(

x∗
′′
(0),−x∗

′′
(T )

)
∈ f ′(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),(

(−1)j+1x∗(j)(0), (−1)jx∗(j)(T )
)
∈ KS ∗

(
x̃(2−j)(0), x̃(2−j)(T )

)
, j = 0, 1,

⟨Bũ(t), x∗(t)⟩ = max
u∈U

⟨Bu, x∗(t)⟩ .

The proof is completed.

4 The duality to k-th order DFIs

We call the following problem, labelled (PHC*), the dual problem to the primal continuous
convex problem (PHC):

(PHC∗) sup J ∗
[
x∗(k)(·);µ∗(t);x∗(j)(t), t = 0, T, j = 0, ..., k − 1

]
where J∗ is defined as follows:

J ∗
[
x∗(k)(·);µ∗(t), x∗(j)(t), t = 0, T, j = 0, ..., k − 1

]
= −f ∗

(
(−1)k−1x∗(k−1)(0) + µ∗(0), µ∗(T ) + (−1)k−1x∗(k−1)(T )

)
12
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+

∫ T

0
MF

(
(−1)kx∗(k)(t), x∗(t)

)
dt−WS(−µ∗(0),−µ∗(T ))

−
k−2∑
j=0

WS

(
(−1)jx∗(j)(0), (−1)j+1x∗(j)(T )

)
.

Note that here maximization is carried out over a set of functions ℜk,j(T, 0)≡
{
x∗(k)(·);µ∗(t) ,

x∗(j)(t),t = 0, T, j = 0, ..., k − 1}. Then, according to this notation

ℜ̃k,j(T, 0) ≡
{
x̃∗(k)(·) ; µ̃∗(t), x̃∗(j)(t), t = 0, T, j = 0, ..., k − 1} .

We suppose that x∗(·) is absolutely continuous function, i.e.

x∗(·) ∈ ACk−1 ([0, T ] ,Rn) , x∗(k)(·) ∈ L1 ([0, T ] ,Rn) .

Below we present our duality theorem for problem (PHC).

Theorem 3. Let x̃(t) be the optimal solution to the convex problem (PHC). Then the collection
ℜ̃k,j(T, 0) is a solution to the dual problem (PHC*) if and only if conditions (a) -(d) of Theorem
1 are satisfied. In addition, the optimal values in problems (PHC) and (PHC*) are equal.

Proof. First, we show that for all feasible solutions x(·) and a collection of dual variables
ℜk,j(T, 0) ≡

{
x∗(k)(·);µ∗(t) , t = 0, T, j = 0, ..., k − 1}, the value of the problem (PHC) is not

less than the value (PCH *), that is

f(x(0), x(T )) ≥ −f ∗
(
(−1)k−1x∗(k−1)(0) + µ∗(0), µ∗(T ) + (−1)k−1x∗(k−1)(T )

)
+

∫ T

0
MF

(
(−1)kx∗(k)(t), x∗(t)

)
dt−WS(−µ∗(0),−µ∗(T ))

−
k−2∑
j=0

WS

(
(−1)jx∗(j)(0), (−1)j+1x∗(j)(T )

)
. (15)

Clearly, applying the Young’s inequality (Mahmudov, 2011), we can write

−f ∗
(
(−1)k−1x∗(k−1)(0) + µ∗(0), µ∗(T ) + (−1)k−1x∗(k−1)(T )

)
≤ f(x(0), x(T ))

−
⟨
x(0), (−1)k−1x∗(k−1)(0) + µ∗(0)

⟩
−
⟨
x(T ), µ∗(T ) + (−1)k−1x∗(k−1)(T )

⟩
. (16)

Now, using the definitions of MF and Hamiltonian functions, we have

MF

(
(−1)kx∗(k)(t) , x∗(t)) ≤

⟨
x(t), (−1)kx∗(k)(t)

⟩
(17)

−
⟨
x(κ)(t), x∗(t)

⟩
=

⟨
x(t), (−1)kx∗(k)(t)

⟩
−
⟨
x(κ)(t), x∗(t)

⟩
.

Hence, integrating (17) over interval [0, T ] we have∫ T

0
MF

(
(−1)kx∗(k)(t) , x∗(t)) dt ≤

∫ T

0

[⟨
x(t), (−1)κx∗(κ)(t)

⟩
−
⟨
x(κ)(t), x∗(t)

⟩]
dt. (18)

On the other hand, it can be easily seen that

−WS(−µ∗(0),−µ∗(T )) ≤ ⟨x(0), µ∗(0)⟩+ ⟨x(T ), µ∗(T )⟩ , (19)

13
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−WS

(
(−1)jx∗(j)(0), (−1)j+1x∗(j)(T )

)
≤

⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)

⟩
+
⟨
(−1)jx∗(j)(T ), x(k−j−1)(T )

⟩
, j = 0, ..., k − 2. (20)

Summing now the inequalities (16) and (18)-(20) we derive

J ∗
[
x∗(k)(·), µ∗(t), x∗(j)(t), t = 0, T ; j = 0, ..., k − 1

]
≤ f(x(0), x(T ))−

⟨
x(0), (−1)k−1x∗(k−1)(0)

⟩
−
⟨
x(T ), (−1)k−1x∗(k−1)(T )

⟩
+

∫ T

0

[⟨
x(t), (−1)κx∗(κ)(t)

⟩
−
⟨
x(κ)(t), x∗(t)

⟩]
dt

+

k−2∑
j=0

[⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)

⟩
+
⟨
(−1)jx∗(j)(T ), x(k−j−1)(T )

⟩]
. (21)

We need calculate the integral of dot product differences

Q =
⟨
x(t), (−1)κx∗(κ)(t)

⟩
−
⟨
x(κ)(t), x∗(t)

⟩
.

To this end we transform Q as follows

Q =
d

dt

⟨
x(t), (−1)κx∗(κ−1)(t)

⟩
+

d

dt

⟨
x′(t), (−1)κ−1x∗(κ−2)(t)

⟩

+
d

dt

⟨
x′′(t), (−1)κ−2x∗(κ−3)(t)

⟩
+ · · · +

d

dt

⟨
x(κ−2)(t), x∗

′
(t)

⟩
− d

dt

⟨
x(κ−1)(t), x∗(t)

⟩
. (22)

Hence, using (22) we can compute the integral of Q over time interval [0, T ] as follows:∫ T

0
Qdt =

⟨
x(T ), (−1)κx∗(κ−1)(T )

⟩
+
⟨
x′(T ), (−1)κ−1x∗(κ−2)(T )

⟩
+
⟨
x′′(T ), (−1)κ−2x∗(κ−3)(T )

⟩
+ · · · +

⟨
x(κ−2)(T ), x∗

′
(T )

⟩
−
⟨
x(κ−1)(T ), x∗(T )

⟩
−
⟨
x(0), (−1)κx∗(κ−1)(0)

⟩
−
⟨
x′(0), (−1)k−1x∗(k−2)(0)

⟩
−
⟨
x′′(0), (−1)k−2x∗(k−3)(0)

⟩
− · · · −

⟨
x(k−2)(0), x∗

′
(0)

⟩
+
⟨
x(k−1)(0), x∗(0)

⟩
= −

k−1∑
j=0

⟨
x(k−j−1)(T ), (−1)jx∗(j)(T )

⟩
−

k−1∑
j=0

⟨
x(k−j−1)(0), (−1)j+1x∗(j)(0)

⟩

= −
k−1∑
j=0

[⟨
x(k−j−1)(0), (−1)j+1x∗(j)(0)

⟩
+
⟨
x(k−j−1)(T ), (−1)jx∗(j)(T )

⟩]
. (23)

Taking into account (23) in (21) we have

J ∗
[
x∗(k)(·);µ∗(t), x∗(j)(t), t = 0, T, j = 0, ..., k − 1

]
≤ f(x(0), x(T ))−

⟨
x(0), (−1)k−1x∗(k−1)(0)

⟩
−
⟨
x(T ), (−1)k−1x∗(k−1)(T )

⟩
+

k−2∑
j=0

[⟨
(−1)j+1x∗(j)(0), x(k−j−1)(0)

⟩
+
⟨
(−1)jx∗(j)(T ), x(k−j−1)(T )

⟩]

14
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−
k−1∑
j=0

[⟨
x(k−j−1)(0), (−1)j+1x∗(j)(0)

⟩
+
⟨
x(k−j−1)(T ), (−1)jx∗(j)(T )

⟩]
= −

⟨
x(T ), (−1)kx∗(k−1)(T )

⟩
−
⟨
x(0), (−1)kx∗(k−1)(0)

⟩
= f(x(0), x(T )). (24)

Thus, it follows from (24) that for an arbitrary feasible solution x(·) of problem (PHC) and
a family of dual variables ℜk,j(T, 0) the inequality holds:

J ∗
[
x∗(k)(·);µ∗(t), x∗(j)(t), t = 0, T, j = 0, ..., k − 1

]
≤ f(x(0), x(T )).

Thus, the justification of inequality (15) is proved.
In addition, assume that the set of dual variables ℜ̃k,j(T, 0) satisfies conditions (a) - (d)

of Theorem 1. Then, as we saw in inequality (5), the proof of Theorem 1, it follows from the
Euler-Lagrange type inclusion (a) and condition (b) that

HF (x(t), x̃
∗(t))−HF (x̃(t), x̃

∗(t)) ≤
⟨
(−1)kx̃∗(k)(t), x(t)− x̃(t)

⟩
.

In turn, recall that by Lemma 2.6 (Mahmudov, 2011) (see, Section 2) in order for x∗ to be an
element of LAM F∗, it is necessary and sufficient that MF (x

∗, v∗)= ⟨x, x∗⟩ −HF (x, v
∗), whence⟨

(−1)kx̃∗(k)(t), x̃(t)
⟩
−HF (x̃(t), x̃∗(t)) = MF

(
(−1)kx̃∗(k)(t) , x̃∗(t)) . (25)

Besides, by Theorem 1.27 (Mahmudov, 2011) the transversality conditions (c), (d) of Theorem 1
inscribed for the family ℜ̃k,j(T, 0) mean that the inequalities (17)-(20) are satisfied as the exact
equalities. Then, the inequality (15) is fulfilled as the equality and for x̃(·) and ℜ̃k,j(T, 0) the
equality of values of (PHC) and (PHC*) problems is guaranteed. Thus, the conditions (a)-(d)
of Theorem 3.1 implies that ℜ̃k,j(T, 0) is a solution of the dual problem (PHC*). The converse is
proved similarly. Since by Lemma 2.6 (Mahmudov, 2011) MF (x

∗, v∗) = ⟨x, x∗⟩ −HF (x, v
∗) the

last formula (25) for our problem means that (17) is satisfied, whence we immediately have an
inclusion of Euler-Lagrange type (a) of Theorem 1. Besides, since the LAM F∗is nonempty, the
condition (b) of Theorem 1 is satisfied. Note that, by assumption, ℜ̃k,j(T, 0) is a solution to the
dual problem and therefore (16) is fulfilled as an equality, without the transversality conditions.
The proof of theorem is completed.

5 Duality problems for third order linear and fourth order
polyhedral DFIs

5.1 Linear problem

In this subsection, we will construct the problem dual to the continuous problem (PTL) from
Section 3. First, we compute MF function

MF (x
∗, v∗) = inf

(x,v)∈gphF
{⟨x, x∗⟩ − ⟨v, v∗⟩}

= inf
x
[⟨x, x∗ −A ∗ v∗⟩]− sup

u∈U
⟨u,B ∗ v∗⟩ =

{
−WU (B ∗ v∗), if x∗ = A ∗ v∗,

−∞, otherwise.
(26)

Then according to the dual problem (PHC*) from (26), we derive

MF

(
−x∗

′′′
(t) , x∗(t)) =

{
−WU (B ∗ x∗(t)), if − x∗

′′′
(t) = A ∗ x∗(t),

−∞, otherwise,

15
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whence we deduce the Euler-Lagrange type adjoint inclusion (equation)

d3x∗(t)

dt3
= −A ∗ x∗(t), ⟨Bũ(t), x∗(t)⟩ = max

u∈U
⟨Bu, x∗(t)⟩ . (27)

Thus, it can be easily seen that the dual problem to problem (PTL) is

sup
{
−f ∗

(
x∗

′′
(0) + µ∗(0), µ∗(T ) + x∗

′′
(T )

)
−
∫ T

0
WU (B ∗ x∗(t))dt

(PTL∗) −WS(−µ∗(0),−µ∗(T )) −
1∑

j=0

WS

(
(−1)jx∗(j)(0), (−1)j+1x∗(j)(T )

) .

Therefore, it is interesting to note that maximization in the problem (PTL*) is performed on

the set of the functions ℜk,j(T, 0) ≡
{
x∗

′′′
(·); µ∗(t) ,x∗(j)(t),t = 0, T, j = 0, 1, 2}.

Theorem 4. Let x̃(t) be the optimal solution to the convex problem (PTL). Then the collection
ℜ̃k,j(T, 0) is a solution to the dual problem (PTL*) if and only if conditions (a) -(d) of Theorem
2 are satisfied. In addition, the optimal values in problems (PHC) and (PHC *) are equal.

5.2 Polyhedral problem

Here we construct a dual problem (PFC*) to a problem with a fourth-order polyhedral differ-
ential inclusion with the endpoint conditions

infimum f(x(0), x(T )),

(PFC)
d4x(t)

dt4
∈ F (x(t)) , a.e. t ∈ [0, T ] , F (x) = {v : Ax− Ev ≤ d} ,(

x(j)(0), x(j)(T )
)
∈ S, j = 0, 1, 2, 3,

where A,E are m × n dimensional matrices, d is a m-dimensional column-vector, f(· , ·) is a
proper convex function. The problem is to find the trajectory x̃(·) of the problem (PFC) that
minimizes the Mayer functional f(· , ·).

Thus, based on Theorem 1 for the problem (PFC), we prove the following theorem.

Theorem 5. For the optimality of the trajectory x̃(·) in problem (PFC) with a fourth-order
polyhedral differential inclusion and endpoint conditions it is sufficient that there exists a non-
negative function λ(t) ≥ 0, t ∈ [0, T ] satisfying (1), (2):

(1)− x∗(iv)(t) = A ∗ λ(t),
⟨
Ax̃(t)− Ex̃(iv)(t)− d, λ(t)

⟩
= 0, a.e. t ∈ [0, T ] ,

(2)
(
−x∗

′′′
(0), x∗

′′′
(T )

)
∈ ∂f(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),(

(−1)j+1E ∗ λ(j)(0), (−1)jE ∗ λ(j)(T )
)
∈ KS ∗

(
x̃(3−j)(0), x̃(3−j)(T )

)
, j = 0, 1, 2.

Proof. By the condition (1) of Theorem 1 one has

−x∗(iv) (t) ∈ F ∗
(
x∗(t); (x̃(t), x̃(iv)(t))

)
. (28)

Hence, we need calculate the LAM F ∗ (x∗(t); (x̃(t), x̃′′′(t))). Clearly, in this case gphF =
{(x, v) : Ax− Ev ≤ d} . For a point w̃ = (x̃, ṽ) ∈ gphF we put I(w̃) = { i : Aix̃− Eiṽ = di,
i = 1, ...,m}, where Ai, Ei be the i -th row of the matrices A, E respectively, and di be the
i -th component of the vector d. On the definition of cone of tangent directions KF (w̃) = {w̄ :

16
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w̃ + γw̄ ∈ gphF for sufficiently small γ > 0}. For each i ∈ I(w̃) the inequality Ai(x̃ + γx̄)
−Ei(ṽ + γv̄) = di+γ(Aix̄− Eiv̄) ≤ di is satisfied, if Aix̄− Eiv̄ ≤ 0, i ∈ I(w̃). If i /∈ I(w̃), then
the inequality Ai(x̃+γx̄)−Ei(ṽ+γv̄) = (Aix̃−Eiṽ)+γ(Aix̄−Eiv̄) < di is valid for sufficiently
small γ > 0 regardless of the choice of w̄ = (x̄, v̄). It follows that KF (w̃)= {w̄ : Aix̄− Eiv̄) ≤ 0 ,
i ∈ I(w̃}. According to Farkas theorem (Mahmudov, 2011), it is not hard to see that (x∗, v∗)
∈ KF ∗ (w̃) if and only if

x∗ = −
∑

i∈I(w̃)

Ai ∗ λi, v∗ =
∑

i∈I(w̃)

Ei ∗ λi, λi ≥ 0, i = 1, ...,m, (29)

where Ai∗, Ei∗ are vector-columns. Then, setting λi = 0, i /∈ I(w̃) and denoting by λ the
vector-column with components λi we derive from (29) that

KF ∗ (w̃) = {(x∗, v∗) : x∗ = −A ∗ λ, v∗ = E ∗ λ, λ ≥ 0, ⟨Ax̃− Eṽ − d, λ⟩ = 0} .

Finally, for the polyhedral LAM from (29) we have the following formula

F ∗ (v∗; (x̃, ṽ)) = {−A ∗ λ : v∗ = E ∗ λ, λ ≥ 0 , ⟨Ax− Ev − d, λ⟩ = 0} . (30)

In fact, from (29), (30) it should be noted that F ∗(v∗; (x̃, ṽ)) does not depend on point w̃ = (x̃, ṽ),
but depends on the set I(w̃) (since the number of such sets is finite it follows that the number
of different LAM F ∗ (v∗; (x̃, ṽ))is finite). Thus, from (28) and (30) we derive that

−x∗(iv)(t) = A ∗ λ(t),
⟨
Ax̃(t)− Ex̃(iv)(t)− d, λ(t)

⟩
= 0, a.e. t ∈ [0, T ] , (31)

where x∗(t) = E ∗ λ(t).
Therefore, since x∗(t) = E ∗ λ(t) the transversality condition of Theorem 1(

−E ∗ λ′′′(0), E ∗ λ′′′(T )
)
∈ ∂f(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),(

(−1)j+1x∗(j)(0), (−1)jx∗(j)(T )
)
∈ KS ∗

(
x̃(3−j)(0), x̃(3−j)(T )

)
, j = 0, 1, 2,

has the following form(
−x∗

′′′
(0), x∗

′′′
(T )

)
∈ ∂f(x̃(0), x̃(T ))−KS ∗ (x̃(0), x̃(T )),(

(−1)j+1E ∗ λ(j)(0), (−1)jE ∗ λ(j)(T )
)
∈ KS ∗

(
x̃(3−j)(0), x̃(3−j)(T )

)
, j = 0, 1, 2.

It remains to construct the dual problem (PFC*) to problem (PFC). First of all, according
to the dual problem (PHC*) we should compute the MF function:

MF (x
∗, v∗) = inf {⟨x, x∗⟩ − ⟨v, v∗⟩ : (x, v) ∈ gphF} .

It can be easily seen that, denoting w = (x, v) ∈ R2n, w∗ = (x∗,−v∗) ∈ R2n we have a problem

inf {⟨w,w∗⟩ : Cw ≤ d} , (32)

where C =

[
A

...− E

]
is m×2n block matrix. Then for a solution w̃ = (x̃, ṽ) of (32) there exists

m-dimensional vector λ ≥ 0 such that w∗ = −C ∗ λ, ⟨Ax̃− Eṽ − d, λ⟩ = 0. Thus, w∗ = −C ∗ λ
implies that x∗ = −A ∗ λ, v∗ = −E ∗ λ, λ ≥ 0. Then, we find that

MF (x
∗, v∗) = ⟨x̃,−A ∗ λ⟩ − ⟨ṽ,−E ∗ λ⟩ = −⟨Ax̃, λ⟩+ ⟨Eṽ, λ⟩ = −⟨d, λ⟩ . (33)
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Besides, taking into account the function MF

(
x∗(iv)(t), x∗(t)

)
and the first and second relations

(33), we derive

x∗(iv)(t) = −A ∗ λ(t), x∗(t) = −E ∗ λ(t), λ(t) ≥ 0,

whence

−E ∗ λ(iv)(t) = −A ∗ λ(t), λ(t) ≥ 0. (34)

Consequently, taking into account (33), (34), and duality Theorem 3 under the conditions
(2) of Theorem 4 we have the following dual problem for fourth order Polyhedral DFIs

(PFC∗) sup

{
−f ∗

(
−x∗

′′′
(0) + µ∗(0), µ∗(T )− x∗

′′′
(T )

)
−
∫ T

0
⟨d, λ(t)⟩ dt

−WS(−µ∗(0),−µ∗(T )) −
2∑

j=0

WS

(
(−1)j+1E ∗ λ(j)(0), (−1)jE ∗ λ(j)(T )

) .

Here maximization in this problem is realized on the set of the functions ℜk,j(T, 0) ≡
{
λ(iv)(·);

µ∗(t), λ(j)(t),t = 0, T ; j = 0, 1, 2, 3}.
Now, based on Theorems 1 for problem (PFC), we have

Theorem 6. Let x̃(t) be the optimal solution to the convex problem (PFC). Then the collection{
λ̃(iv)(·) ≥ 0, µ̃∗(t) ,λ̃(j)(t),t = 0, T ; j = 0, 1, 2, 3}, t ∈ [0, T ] is a solution to the dual problem

(PFC*) if and only if conditions (1),(2) of Theorem 4 are satisfied. In addition, the optimal
values in problems (PFC) and (PFC *) are equal.

6 Conclusion

The paper deals with the development of Mayer problem for higher order evolution DFIs with
endpoint constraints. First are derived sufficient optimality conditions in the form of Euler-
Lagrange type inclusions and transversality conditions. It is shown that the adjoint inclusion
for the first order DFIs, defined in terms of locally adjoint mapping, coincides with the classical
Euler-Lagrange inclusion. For construction of the dual problem for higher order problem is
required skillfully computation of conjugate and support functions. Therefore, to avoid long
calculations, construction of dual problem is omitted. It appears that the Euler-Lagrange type
inclusions are duality relations for both primal and dual problems. We believe that relying
to the unique method described in this paper it can be obtained the similar duality results to
optimal control problems with any higher order differential inclusions. The arising difficulties, of
course, are connected with the calculation of conjugate function, integral part of dual problem
and support functions. There has been a significant development in the study of duality theory
to problems with first order differential/difference inclusions in recent years. Besides, there can
be no doubt that investigations of duality results to problems with higher order differential
inclusions can have great contribution to the modern development of the optimal control theory.
Consequently, we can conclude that the proposed method is reliable for solving the various dual
problems with higher order differential inclusions.
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